

Straylight Considerations for Formation Flying

Paul Reid / Mike Garcia Smithsonian Astrophysical Observatory (SAO) preid@cfa.harvard.edu / garcia@head-cfa.cfa.harvard.edu

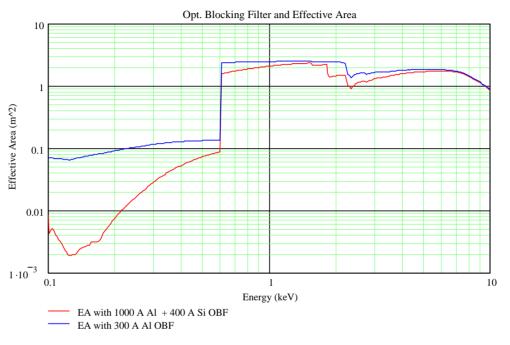
Introduction and Requirements

- Formation flying places new requirements on straylight baffling since we have "discarded" the shielding tube that typically encloses telescope
- Requirements flowed down from Top Level Requirements
 - measure faint object spectra to limit of 2 x 10⁻¹⁵ ergs-cm⁻²-s⁻¹ (0.2-2keV)
 - spectral bandpass of 0.25 to 40 keV
 - resolution requirement of R ≥ 300 over 0.25 to 10 keV
 - effective area \geq 0.1 m² over 0.25 to 10 keV (except where otherwise specified at larger values)
- Consider stray visible light from Sun and diffuse x-ray background (DXB).
 - subsequent activity will consider straylight from Earth, Moon, bright planets, and zodiacal light

pbr / mrg October 14/15, 2004

Flowed-down Requirements

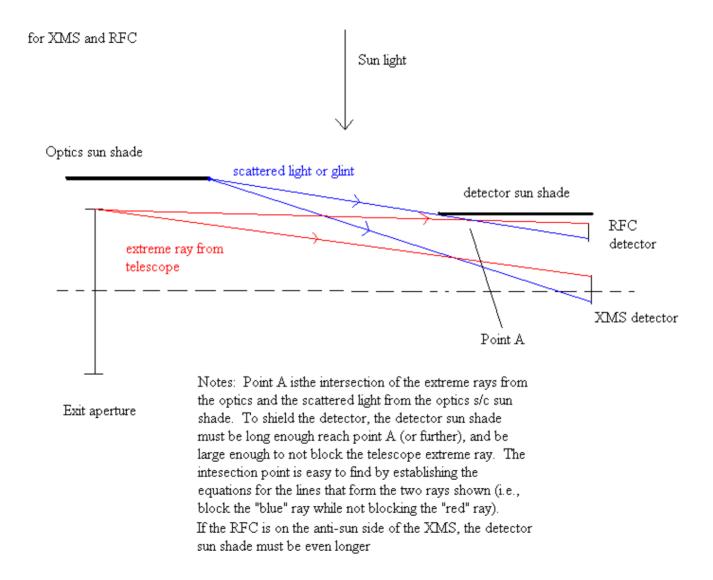
Visible straylight


- RGS/RFC is the most constrained case due to low E bandpass
- allow ~ 2 vis photons/pixel/integration period
 - limits straylight to level comparable to CCD readout noise

Diffuse X-ray Background

- again, RGS/RFC is the most constrained case
- limit DXB to comparable to or less than other limiting noise sources
 - CCD readout noise
 - cosmic ray background
- allow ~ 1 x 10⁻⁶ counts-s⁻¹-sq arcsec⁻¹
 - ACIS-I rate

October 14/15, 2004 pbr / mrg


Baffling vs. optical blocking filters: preliminary analysis

- preliminary analysis with 4 m diameter telescope configuration
- if only shield against direct illumination, stray light requirement coupled with solar flux and estimated baffle size requires minimum OBF thickness of ~ 1000 Å AI + 400 Å Si
- if shield against scattered illumination, minimum OBF thickness ~ 300 Å Al
- Thicker blocking filters are inconsistent with low E Effective Area Reg't

FST-4

Design considerations - I

FST-5

Design considerations - II: Shade lengths

Case	Optics Shade Y Position (m)	Shade Length (m)
Sun side	2.3	15.7
	4	6.9
90 deg from Sun side	2.3	11.6
	4	5.6
Anti-sun side	2.3	9.8
	4	5.3

- The further the straylight baffles are radially out from the optical axis, the shorter they can be axially.
- Shade size can be quite large "half a tennis court"

"Engineering" Requirements

- No direct view of sky and/or sun by detectors
- No direct illumination of mirrors forward or aft ends by sun
- No direct illumination of grating assy forward or aft ends by sun
- No direct view of by RGA of sky
- No singly scattered/reflected sunlight allowed to enter detectors
 - I.e., cannot scatter off of aft end of mirror sunshade into detectors
 - need to examine whether can tolerate scatter off aft end of mirror sunshade into forward end of grating assy - believe not allowed
- Requirements apply over full range of pitch (+/- 30 deg), roll (+/- 15 deg), and yaw (+/- 180 deg)
- Note: still need to examine impact of Earth/Moon/bright planets/Zodiacal light

Summary

- Formation flying imposes different straylight constraints upon mission
- Large straylight shields/baffles will be required
- Large shields may complicate mission configuration and formation flying requirements

October 14/15, 2004 pbr / mrg

FST-8